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Abstract
We consider the N = 1 supersymmetric Korteweg–de Vries (sKdV) equation
within the framework of Hirota’s bilinear method. We construct a Bäcklund
transformation which may be interpreted as the modified sKdV equation.
Also, we find a Lax representation and a nonlinear superposition formula.
By direct applications of the nonlinear superposition formula, we calculate
soliton solutions for the sKdV equation.

PACS numbers: 02.30.Ik, 11.30.−j

1. Introduction

The N = 1 supersymmetric Korteweg–de Vries (sKdV) equation is introduced by Manin and
Radul [10] in their theory on supersymmetric KP hierarchy. It reads

�t − 3(�D�)x + �xxx = 0, (1)

where � is a Grassmann odd variable depending on super spatial variables (x, θ) and temporal
variable t. D = ∂

∂θ
+ θ ∂

∂x
is the super derivative. Since the work of Manin and Radul, this

sKdV equation has attracted much attention in the community of mathematical physics. It
is shown that this equation, like its classical counterpart KdV equation, has many interesting
properties, such as bi-Hamiltonian structures [16], infinite number of symmetries, Painlevé
property [12], etc.

Apart from algebraic and geometrical properties, integrable equations possess interesting
solutions known as multi-solitons. In the theory of integrable systems, there are many
effective methods for constructing solutions, such as inverse scattering transform, Darboux
transformation, Bäcklund transformation (BT), Hirota’s bilinear approach and symmetry
methods. The study of Darboux transformation for supersymmetric integrable systems was
initiated in [5] and continued in [6]. As the consequence of applying Darboux transformation,
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one kind of soliton is obtained for sKdV equation, which is characterized by the appearance
of certain constraints on the parameters. Recently, Hirota’s method (see [3, 4] for example)
was used in the context of the sKdV equation in [13] and the explicit solutions were calculated
within this framework by Carstea, Ramani and Grammaticos [2]. The appealing feature
here is that these solutions are free of any constraint. Very recently, in [9] a BT and the
associated nonlinear superposition formula are found. Since this nonlinear superposition
formula is differential and algebraic in nature, it provides us a very useful tool to calculate
more complicated solutions systematically.

The purpose of the present paper is to examine the sKdV equation from the viewpoint of
Hirota’s method. We will show that a bilinear BT can be worked out. This bilinear BT in turn
can be regarded as a integrable equation, namely a modified sKdV equation. Furthermore,
we found a new Lax representation for the sKdV equation. We also present a nonlinear
superposition formula, which allows us to calculate soliton solutions straightforwardly. All
these results are the consequence of bilinerization of the sKdV equation.

The paper is organized as follows. In the next section, we construct a BT for the sKdV.
In section 3, we show that a Lax representation and a modified sKdV equation can be derived
from this BT. Section 4 is devoted to the bilinear superposition formula. We conclude the
paper with section 5.

2. Bäcklund transformation

Following [1, 13], we now transform the sKdV equation (1) into Hirota’s bilinear form. To
this end, we introduce

� = �x,

then the sKdV equation (1) is reformed into its potential form

�t − 3�xD�x + �xxx = 0, (2)

then through the following substitution [1, 13]

� = −2D(ln f ), (3)

equation (2) is brought to

S
(
Dt + D3

x

)
f · f = 0, (4)

where Hirota’s derivatives are defined as follows:

SDm
t Dn

xf · g = (
Dθ1 − Dθ2

) (
∂

∂t1
− ∂

∂t2

)m (
∂

∂x1
− ∂

∂x2

)n

f (x1, t1, θ1)g(x2, t2, θ2)

∣∣∣∣ x1=x2
t1=t2
θ1=θ2 .

We now have the following proposition.

Proposition 1. Let f be a solution of equation (4) and g is associated with f via the following
equations,

(SDx − λS)f · g = 0, (5)(
Dt + 3λ2Dx − 3λD2

x + D3
x

)
f · g = 0, (6)

where λ is an arbitrary (bosonic) constant. Then, g is another solution of (4).

Proof. We consider

P = [
S

(
Dt + D3

x

)
f · f

]
gg − ff

[
S

(
Dt + D3

x

)
g · g

]
we will show that P = 0.
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Indeed, we have

P
(A.1−A.2)= 2S(Dtf · g) · gf + 2S

(
D3

xf · g
) · fg + 6S

(
D2

xf · g
) · (Dxg · f )

− 3
[
(SDxf · f )

(
D2

xg · g
) − (SDxg · g)

(
D2

xf · f
)]

(A.3)= 2S
((

Dt + D3
x

)
f · g

) · gf + 6Dx(SDxf · g) · (Dxg · f )

(5)= 2S
((

Dt + D3
x

)
f · g

) · gf + 6λDx(Sf · g) · (Dxg · f )

(A.4)= 2S
[(

Dt − 3λD2
x + D3

x

)
f · g

] · fg + 6λDx(SDxf · g) · (gf )

(A.5)= 2S
[(

Dt − 3λD2
x + 3λ2Dx + D3

x

)
f · g

] · fg

+ 6Dx((SDx − λS)f · g) · (Dxg · f )
(5−6)= 0.

Thus, our proposition is proved. �

Next we convert the bilinear BT to ordinary form. To this end, let

� = −2D(ln f ), �̄ = −2D(ln g)

then we find that

(� + �̄)x = λ(� − �̄) + 1
2 (� − �̄)(D� − D�̄),

D−1(�t − �̄t ) = 3λ
[
D(� + �̄)x − 1

2 (D� − D�̄)2
] − 3λ2(D� − D�̄)

− D(� − �̄)xx − 1
4 (D� − D�̄)3 + 3

2 (D� − D�̄)(D�x + D�̄x).

or

(� + �̄)x = λ(� − �̄) + 1
2 (� − �̄)(D� − D�̄),

(� − �̄)t = 3λ[(� + �̄)xx − (D� − D�̄)(�x − �̄x)] − 3λ2(�x − �̄x)

− 3
4 (D� − D�̄)2(�x − �̄x) + 3

2 (� − �̄)x(D� + D�̄)x

+ 3
2 (D� − �̄)xx − (� − �̄)xxx,

this constitutes our BT in ordinary variables, which is that found in [9] by adopting a different
procedure.

3. Lax representation and modified equation

In the theory of classical integrable systems, a BT is not only an effective procedure to
construct particular solutions, it also contains other importance information on a given system.
For example, it is often possible to derive a Lax representation. Furthermore, a BT itself can
be interpreted as an integrable system. We now show that it is also the case for the sKdV
equation.

We first show that our BT (5) and (6) obtained in the previous section also supplies us a
Lax representation for the sKdV equation (1). To this end, suppose

� = g

f
,

then the variables f and g can be eliminated from equations (5) and (6). The elimination
results in

D�x − �x� + λD� = 0, (7)

�t − 3λ(D�x)� + 3(λ2 − (D�x))�x + 3λ�xx + �xxx = 0. (8)
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Therefore we have

Proposition 2. The compatibility condition of (7) and (8) is the sKdV equation (1).

Proof. Direct calculations.

It is interesting to observe that the linear problem (7) allows us to have the following Lax
operator:

L = ∂ − �D−1.

We also note that this Lax operator is different from that considered in [11]. Indeed, the
present Lax operator is in the form of a modified constrained system on the one hand. On the
other hand, we may consider the linear problem (7) as a reduction of the more general energy
dependent super Hill problem studied in [7]. With this Lax operator we may construct the
sKdV hierarchy through the standard fractional power method

∂L

∂tn
= [L, (Ln)�1].

Now let us view the BT (5) and (6) as a system, which should be an integrable system. By
means of

ϒ = ln (g/f ),

we convert (5) into

� = Dϒx + (Dϒ)ϒx (9)

and (6) into

ϒt + 3λ2ϒx + ϒxxx − 2ϒ3
x + 3(λ + ϒx)(Dϒ)(Dϒx) = 0. (10)

We see that equation (9) is the Miura-type transformation found in [11, 17], while
equation (10) is a generalization of the supersymmetric modified KdV equation. If we set
the parameter λ to zero, we recover the standard version, which was discussed recently in [8]
according to Hirota’s method. �

4. Nonlinear superposition formula

In this section, we will show that a nonlinear superposition formula associated with the bilinear
BT (5) and (6) can be derived naturally.

Let us start with an arbitrary solution f0. By taking BT with parameter λ1, we have another
solution f1. Then we do the second step of BT starting with f1 and parameter taking value λ2.
The solution obtained in this step is denoted as f12. Now we exchange the parameters, namely
starting with f0 and doing the first step of BT with parameter λ2, we obtain a solution f2. Then
doing the second step of BT with the parameter λ1, we arrive at a solution f21. By Bianchi’s
permutation theorem, we may take f12 = f21. This process is represented schematically by

Bianchi’s diagram
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Let us list the equations resulting from the above procedure. From (6), we have

(
Dt + 3λ2

1Dx − 3λ1D
2
x + D3

x

)
f0 · f1 = 0, (11)(

Dt + 3λ2
2Dx − 3λ2D

2
x + D3

x

)
f1 · f12 = 0, (12)(

Dt + 3λ2
2Dx − 3λ2D

2
x + D3

x

)
f0 · f2 = 0, (13)(

Dt + 3λ2
1Dx − 3λ1D

2
x + D3

x

)
f2 · f12 = 0, (14)

from equations (11) and (14), we have

(Dtf0 · f1)f2f12 − (Dtf2 · f12)f0f1 = −3λ2
1 [(Dxf0 · f1)f2f12 − f0f1(Dxf2 · f12)]

+ 3λ1
[(

D2
xf0 · f1

)
f2f12 − f0f1

(
D2

xf2 · f12
]

− (
D3

xf0 · f1
)
f2f12 + f0f1

(
D3

xf2 · f12
)
, (15)

by means of the identity (A.6), we obtain from above

(Dtf0 · f2)f1f12 − f0f2(Dtf1 · f12) = −3λ2
1 [(Dxf0 · f2)f1f12 − f0f2(Dxf1 · f12)]

+ 3λ1
[(

D2
xf0 · f1

)
f2f12 − f0f1

(
D2

xf2 · f12
]

− (
D3

xf0 · f1
)
f2f12 + f0f1

(
D3

xf2 · f12
)
. (16)

Similarly, using equations (12) and (13), we have

(Dtf1 · f12)f0f2 − f1f12(Dtf0 · f2) = −3λ2
2 [(Dxf1 · f12)f0f2 − f1f12(Dxf0 · f2)]

+ 3λ2
[(

D2
xf1 · f12

)
f0f2 − f1f12

(
D2

xf0 · f2
]

− (
D3

xf1 · f12
)
f0f2 + f1f12

(
D3

xf0 · f2
)
. (17)

Then adding equation (16) with equation (17), we have

3
(
λ2

1 − λ2
2

)
[(Dxf0 · f2)f1f12 − f0f2(Dxf1 · f12)] = 3λ1

[(
D2

xf0 · f1
)
f2f12

− f0f1
(
D2

xf2 · f12
)]

+ 3λ2
[(

D2
xf1 · f12

)
f0f2 − f1f12

(
D2

xf0 · f2
)]

− (D3
xf0 · f1)f2f12 + f0f1

(
D3

xf2 · f12
)

− (
D3

xf1 · f12
)
f0f2 + f1f12

(
D3

xf0 · f2
)
. (18)

Taking account of (A.7) and (A.8), we find(
λ2

1 − λ2
2

)
[(Dxf0 · f2)f1f12 − f0f2(Dxf1 · f12)] = Dx [(λ1 − λ2)(Dxf0 · f12) · f2f1]

+ Dx [(λ1 + λ2)f0f12 · (Dxf2 · f1)] + Dx [(Dxf0 · f12) · (Dxf1 · f2)] , (19)

or

Dx {[(Dx − λ1 − λ2)f0 · f12] · [(Dx + λ1 − λ2)f1 · f2]} = 0, (20)

which implies that

(Dx − λ1 − λ2)f0 · f12 = c1(Dx + λ1 − λ2)f1 · f2, (21)

where c1 = c1(t) is an integration constant.
Now we consider the other part. With the assumption that (21) holds, we consider

Q ≡ [(SDx − λ1S)f0 · f1] f2 − [(SDx − λ2S)f0 · f2] f1,
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it yields

Q
(A.9−A.10)= −(Df0)(Dxf1 · f2) − f0x(Sf1 · f2) +

1

2
f0 [(Sf0 · f1)xf2 + D(Dxf1 · f2)]

− (λ1 − λ2)

[
(Df0)f1f2 − 1

2
f0(Df1f2)

]
+

1

2
(λ1 + λ2)f0(Sf1 · f2)

= −(Df0) [(Dx + λ1 − λ2)f1 · f2] +
1

2
f0D [(Dx + λ1 − λ2)f1 · f2]

− f0x(Sf1 · f2) +
1

2
f0(Sf1 · f2)x +

1

2
(λ1 + λ2)f0(Sf1 · f2)

(21)= − (Df0)

c1
[(Dx − λ1 − λ2)f0 · f12] +

f0

2c1
D [(Dx − λ1 − λ2)f0 · f12]︸ ︷︷ ︸

− f0x(Sf1 · f2) +
1

2
f0(Sf1 · f2)x +

1

2
(λ1 + λ2)f0(Sf1 · f2). (22)

We now note that the underbraced terms can be reformulated as

−f0x

c1
(Sf0 · f12) +

f0

2c1
[(Sf0 · f12)x + (λ1 + λ2)Sf0 · f12] ,

therefore we have

Q =
[
−f0x +

1

2
f0

∂

∂x
+

1

2
(λ1 + λ2)f0

] [
1

c1
Sf0 · f12 + Sf1 · f2

]
. (23)

From Q = 0 we have

1

c1
Sf0 · f12 + Sf1 · f2 = c2f

2
0 e−(λ1+λ2)x (24)

where c2 = c2(t) is an integration constant.
The nonlinear superposition formula constitutes equations (21) and (24), which are

differential equations to be solved to find solutions. Interestingly, they can be solved in a
closed form

f12 = c1

(λ1 + λ2)f0

[
2(Df0)Sf1 · f2

f0
− 2Dxf1 · f2 + 2(Df1)(Df2)

− (λ1 − λ2)f1f2 + c2f
2
0 (D e−(λ1+λ2)x)

]
.

However, by setting c1 = 1 and c2 = 0, we have

f12 = 1

(λ1 + λ2)f0

[
2(Df0)Sf1 · f2

f0
− 2Dxf1 · f2 + 2(Df1)(Df2) − (λ1 − λ2)f1f2

]
,

this nonlinear superposition formula is of differential-algebraic nature.
Let us now try to calculate some solutions. As usual, we start with the trivial solution

f0 = 1,

then we find the 1-soliton solution

f = 1 + eη, η = kx − k3t + θξ,

where k is the ordinary wavenumber which relates to the spectral parameter through k = −λ

and ξ is a Grassmann odd constant. To construct a 2-soliton, we take

f1 = 1 + eη1 , f2 = 1 + eη2 ,
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then we obtain

f12 = −k1 − k2

k1 + k2
+ eη1 − eη2 +

k1 − k2 − 2ξ1ξ2 − 2θ(k1ξ2 − k2ξ1)

k1 + k2
eη1+η2 .

We may continue to calculate a 3-soliton solution, which is

f123 = s0 + s1 eη1 + s2 eη2 + s3 eη3 + s12 eη1+η2 + s13 eη1+η3 + s23 eη2+η3 + s123 eη1+η2+η3 , (25)

where

s0 = (k1 − k2)(k1 − k3)(k2 − k3)

(k1 + k2)(k1 + k3)(k2 + k3)
, s1 = k2 − k3

k2 + k3
, s2 = −k1 − k3

k1 + k3
,

s3 = k1 − k2

k1 + k2
, s12 = −k1 + k2 + 2m12

k1 + k2
, s13 = k1 − k3 − 2m13

k1 + k3
,

s23 = −k2 + k3 + 2m23

k2 + k3
,

s123 = −s0 + 2
(m12 + m23 − m13)(k1k2 + k1k3 + k2k3) +

(
m12k

2
3 + m23k

2
1 − m13k

2
2

)
(k1 + k2)(k1 + k3)(k2 + k3)

,

and

mij = ξiξj + θ(kiξj − kj ξi).

These solutions are equivalent to those found early in [2].

5. Conclusions

In this paper, we have shown that on the basis of Hirota’s direct method, we may extract a lot
of properties for the sKdV equation. We derive a BT, a Lax representation, and a modified
equation. We also constructed a nonlinear superposition formula within the bilinear approach.
Thus, even in the supersymmetric case, Hirota’s bilinear method is a very effective method.

In the classical case, the chain of a BT supplies a chain of integrable systems. In the KdV
case, such a situation is studied by Nakamura and Hirota [14, 15]. It would be interesting to
find out what happens in the supersymmetric case.
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Appendix. Some bilinear identities

In this appendix, we list the relevant bilinear identities, which can be proved directly. Here
a, b, c and d are arbitrary even functions of the independent variables x, t and θ .

(SDta · a)b2 − a2(SDtb · b) = 2S(Dta · b) · ba (A.1)

(
SD3

xa · a
)
b2 − a2

(
SD3

xb · b
) = 2S

[(
D3

xa · b
) · ab + 3

(
D2

xa · b
) · (Dxb · a)

]
− 3

[
(SDxa · a)

(
D2

xb · b
) − (SDxb · b)

(
D2

xa · a
)]

(A.2)
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S
(
D2

xa · b
) · (Dxb · a) − D(SDxa · b) · (Dxb · a)

= 1
2

[
(SDxa · a)

(
D2

xb · b
) − (SDxb · b)

(
D2

xa · a
)]

(A.3)

Dx(Sa · b) · (Dxb · a) = Dx(SDxa · b) · ba − S(D2
xa · b) · ab (A.4)

S(Dxa · b) · ba = Dx(Sa · b) · ba (A.5)

(Dxa · b)cd − ab(Dxc · d) = (Dxa · c)bd − ac(Dxb · d) (A.6)(
D2

xa · b
)
cd − ab(D2

xc · d) = Dx [(Dxa · d) · cb + ad · (Dxc · b)] (A.7)

(
D3

xa · b
)
cd + ab

(
D3

xc · d
) = (

D3
xa · d

)
cb + ad

(
D3

xc · b
) − 3Dx(Dxa · c) · (Dxb · d),

(A.8)

(SDxa · b)c − (SDxa · c)b = −(Da)(Dxb · c) − ax(Sb · c) + 1
2a [(Sb · c)x + D(Dxb · c)] ,

(A.9)

λ1(Sa · b)c − λ2(Sa · c)b = (λ1 − λ2)(Da)bc − 1
2a [(λ1 + λ2)(Sb · c) + (λ1 − λ2)Dbc] .

(A.10)
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