Bilinearization of $N=1$ supersymmetric Korteweg-de Vries equation revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 386371
(http://iopscience.iop.org/0305-4470/38/28/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.92
The article was downloaded on 03/06/2010 at 03:50

Please note that terms and conditions apply.

Bilinearization of $N=1$ supersymmetric Korteweg-de Vries equation revisited

Q P Liu ${ }^{1}$ and Xing-Biao $\mathbf{H u}^{2,3}$
${ }^{1}$ Department of Mathematics, China University of Mining and Technology, Beijing 100083, People's Republic of China
${ }^{2}$ Institute of Computational Mathematics, AMSS, Academia Sinica, PO Box 2719, Beijing 100080, People's Republic of China
${ }^{3}$ International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

Received 11 January 2005
Published 29 June 2005
Online at stacks.iop.org/JPhysA/38/6371

Abstract

We consider the $N=1$ supersymmetric Korteweg-de Vries (sKdV) equation within the framework of Hirota's bilinear method. We construct a Bäcklund transformation which may be interpreted as the modified sKdV equation. Also, we find a Lax representation and a nonlinear superposition formula. By direct applications of the nonlinear superposition formula, we calculate soliton solutions for the sKdV equation.

PACS numbers: 02.30.Ik, 11.30.-j

1. Introduction

The $N=1$ supersymmetric Korteweg-de Vries (sKdV) equation is introduced by Manin and Radul [10] in their theory on supersymmetric KP hierarchy. It reads

$$
\begin{equation*}
\Phi_{t}-3(\Phi \mathcal{D} \Phi)_{x}+\Phi_{x x x}=0, \tag{1}
\end{equation*}
$$

where Φ is a Grassmann odd variable depending on super spatial variables (x, θ) and temporal variable $t . \mathcal{D}=\frac{\partial}{\partial \theta}+\theta \frac{\partial}{\partial x}$ is the super derivative. Since the work of Manin and Radul, this sKdV equation has attracted much attention in the community of mathematical physics. It is shown that this equation, like its classical counterpart KdV equation, has many interesting properties, such as bi-Hamiltonian structures [16], infinite number of symmetries, Painlevé property [12], etc.

Apart from algebraic and geometrical properties, integrable equations possess interesting solutions known as multi-solitons. In the theory of integrable systems, there are many effective methods for constructing solutions, such as inverse scattering transform, Darboux transformation, Bäcklund transformation (BT), Hirota's bilinear approach and symmetry methods. The study of Darboux transformation for supersymmetric integrable systems was initiated in [5] and continued in [6]. As the consequence of applying Darboux transformation,
one kind of soliton is obtained for sKdV equation, which is characterized by the appearance of certain constraints on the parameters. Recently, Hirota's method (see [3, 4] for example) was used in the context of the sKdV equation in [13] and the explicit solutions were calculated within this framework by Carstea, Ramani and Grammaticos [2]. The appealing feature here is that these solutions are free of any constraint. Very recently, in [9] a BT and the associated nonlinear superposition formula are found. Since this nonlinear superposition formula is differential and algebraic in nature, it provides us a very useful tool to calculate more complicated solutions systematically.

The purpose of the present paper is to examine the sKdV equation from the viewpoint of Hirota's method. We will show that a bilinear BT can be worked out. This bilinear BT in turn can be regarded as a integrable equation, namely a modified sKdV equation. Furthermore, we found a new Lax representation for the sKdV equation. We also present a nonlinear superposition formula, which allows us to calculate soliton solutions straightforwardly. All these results are the consequence of bilinerization of the sKdV equation.

The paper is organized as follows. In the next section, we construct a BT for the sKdV. In section 3, we show that a Lax representation and a modified sKdV equation can be derived from this BT. Section 4 is devoted to the bilinear superposition formula. We conclude the paper with section 5 .

2. Bäcklund transformation

Following [1, 13], we now transform the sKdV equation (1) into Hirota's bilinear form. To this end, we introduce

$$
\Phi=\Psi_{x}
$$

then the $s K d V$ equation (1) is reformed into its potential form

$$
\begin{equation*}
\Psi_{t}-3 \Psi_{x} \mathcal{D} \Psi_{x}+\Psi_{x x x}=0 \tag{2}
\end{equation*}
$$

then through the following substitution $[1,13]$

$$
\begin{equation*}
\Psi=-2 \mathcal{D}(\ln f) \tag{3}
\end{equation*}
$$

equation (2) is brought to

$$
\begin{equation*}
S\left(D_{t}+D_{x}^{3}\right) f \cdot f=0 \tag{4}
\end{equation*}
$$

where Hirota's derivatives are defined as follows:
$S D_{t}^{m} D_{x}^{n} f \cdot g=\left.\left(\mathcal{D}_{\theta_{1}}-\mathcal{D}_{\theta_{2}}\right)\left(\frac{\partial}{\partial t_{1}}-\frac{\partial}{\partial t_{2}}\right)^{m}\left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}\right)^{n} f\left(x_{1}, t_{1}, \theta_{1}\right) g\left(x_{2}, t_{2}, \theta_{2}\right)\right|_{\substack{x_{1}=x_{2} \\ t_{1}=t_{2} \\ \theta_{1}=\theta_{2}}} ^{\substack{ \\\hline}}$
We now have the following proposition.
Proposition 1. Let f be a solution of equation (4) and g is associated with f via the following equations,

$$
\begin{align*}
& \left(S D_{x}-\lambda S\right) f \cdot g=0 \tag{5}\\
& \left(D_{t}+3 \lambda^{2} D_{x}-3 \lambda D_{x}^{2}+D_{x}^{3}\right) f \cdot g=0 \tag{6}
\end{align*}
$$

where λ is an arbitrary (bosonic) constant. Then, g is another solution of (4).
Proof. We consider

$$
\mathbb{P}=\left[S\left(D_{t}+D_{x}^{3}\right) f \cdot f\right] g g-f f\left[S\left(D_{t}+D_{x}^{3}\right) g \cdot g\right]
$$

we will show that $\mathbb{P}=0$.

Indeed, we have

$$
\begin{aligned}
& \mathbb{P} \stackrel{(A .1-A .2)}{=} 2 S\left(D_{t} f \cdot g\right) \cdot g f+2 S\left(D_{x}^{3} f \cdot g\right) \cdot f g+6 S\left(D_{x}^{2} f \cdot g\right) \cdot\left(D_{x} g \cdot f\right) \\
&-3\left[\left(S D_{x} f \cdot f\right)\left(D_{x}^{2} g \cdot g\right)-\left(S D_{x} g \cdot g\right)\left(D_{x}^{2} f \cdot f\right)\right] \\
& \stackrel{(A .3)}{=} 2 S\left(\left(D_{t}+D_{x}^{3}\right) f \cdot g\right) \cdot g f+6 D_{x}\left(S D_{x} f \cdot g\right) \cdot\left(D_{x} g \cdot f\right) \\
& \stackrel{(5)}{=} 2 S\left(\left(D_{t}+D_{x}^{3}\right) f \cdot g\right) \cdot g f+6 \lambda D_{x}(S f \cdot g) \cdot\left(D_{x} g \cdot f\right) \\
& \stackrel{(A .4)}{=} 2 S\left[\left(D_{t}-3 \lambda D_{x}^{2}+D_{x}^{3}\right) f \cdot g\right] \cdot f g+6 \lambda D_{x}\left(S D_{x} f \cdot g\right) \cdot(g f) \\
& \stackrel{(A .5)}{=} 2 S\left[\left(D_{t}-3 \lambda D_{x}^{2}+3 \lambda^{2} D_{x}+D_{x}^{3}\right) f \cdot g\right] \cdot f g \\
&+6 D_{x}\left(\left(S D_{x}-\lambda S\right) f \cdot g\right) \cdot\left(D_{x} g \cdot f\right) \stackrel{(5-6)}{=} 0 .
\end{aligned}
$$

Thus, our proposition is proved.
Next we convert the bilinear BT to ordinary form. To this end, let

$$
\Psi=-2 \mathcal{D}(\ln f), \quad \bar{\Psi}=-2 \mathcal{D}(\ln g)
$$

then we find that

$$
\begin{aligned}
&(\Psi+\bar{\Psi})_{x}=\lambda(\Psi-\bar{\Psi})+\frac{1}{2}(\Psi-\bar{\Psi})(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi}) \\
& \mathcal{D}^{-1}\left(\Psi_{t}-\bar{\Psi}_{t}\right)= 3 \lambda\left[\mathcal{D}(\Psi+\bar{\Psi})_{x}-\frac{1}{2}(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi})^{2}\right]-3 \lambda^{2}(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi}) \\
&-\mathcal{D}(\Psi-\bar{\Psi})_{x x}-\frac{1}{4}(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi})^{3}+\frac{3}{2}(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi})\left(\mathcal{D} \Psi_{x}+\mathcal{D} \bar{\Psi}_{x}\right) .
\end{aligned}
$$

or

$$
\begin{aligned}
(\Psi+\bar{\Psi})_{x}= & \lambda(\Psi-\bar{\Psi})+\frac{1}{2}(\Psi-\bar{\Psi})(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi}), \\
(\Psi-\bar{\Psi})_{t}= & 3 \lambda\left[(\Psi+\bar{\Psi})_{x x}-(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi})\left(\Psi_{x}-\bar{\Psi}_{x}\right)\right]-3 \lambda^{2}\left(\Psi_{x}-\bar{\Psi}_{x}\right) \\
& -\frac{3}{4}(\mathcal{D} \Psi-\mathcal{D} \bar{\Psi})^{2}\left(\Psi_{x}-\bar{\Psi}_{x}\right)+\frac{3}{2}(\Psi-\bar{\Psi})_{x}(\mathcal{D} \Psi+\mathcal{D} \bar{\Psi})_{x} \\
& +\frac{3}{2}(\mathcal{D} \Psi-\bar{\Psi})_{x x}-(\Psi-\bar{\Psi})_{x x x},
\end{aligned}
$$

this constitutes our BT in ordinary variables, which is that found in [9] by adopting a different procedure.

3. Lax representation and modified equation

In the theory of classical integrable systems, a BT is not only an effective procedure to construct particular solutions, it also contains other importance information on a given system. For example, it is often possible to derive a Lax representation. Furthermore, a BT itself can be interpreted as an integrable system. We now show that it is also the case for the sKdV equation.

We first show that our BT (5) and (6) obtained in the previous section also supplies us a Lax representation for the $s K d V$ equation (1). To this end, suppose

$$
\Sigma=\frac{g}{f},
$$

then the variables f and g can be eliminated from equations (5) and (6). The elimination results in

$$
\begin{align*}
& \mathcal{D} \Sigma_{x}-\Psi_{x} \Sigma+\lambda \mathcal{D} \Sigma=0 \tag{7}\\
& \Sigma_{t}-3 \lambda\left(\mathcal{D} \Psi_{x}\right) \Sigma+3\left(\lambda^{2}-\left(\mathcal{D} \Psi_{x}\right)\right) \Sigma_{x}+3 \lambda \Sigma_{x x}+\Sigma_{x x x}=0 . \tag{8}
\end{align*}
$$

Therefore we have
Proposition 2. The compatibility condition of (7) and (8) is the sKdV equation (1).
Proof. Direct calculations.
It is interesting to observe that the linear problem (7) allows us to have the following Lax operator:

$$
L=\partial-\Phi \mathcal{D}^{-1} .
$$

We also note that this Lax operator is different from that considered in [11]. Indeed, the present Lax operator is in the form of a modified constrained system on the one hand. On the other hand, we may consider the linear problem (7) as a reduction of the more general energy dependent super Hill problem studied in [7]. With this Lax operator we may construct the sKdV hierarchy through the standard fractional power method

$$
\frac{\partial L}{\partial t_{n}}=\left[L,\left(L^{n}\right)_{\geqslant 1}\right] .
$$

Now let us view the BT (5) and (6) as a system, which should be an integrable system. By means of

$$
\Upsilon=\ln (g / f)
$$

we convert (5) into

$$
\begin{equation*}
\Phi=\mathcal{D} \Upsilon_{x}+(\mathcal{D} \Upsilon) \Upsilon_{x} \tag{9}
\end{equation*}
$$

and (6) into

$$
\begin{equation*}
\Upsilon_{t}+3 \lambda^{2} \Upsilon_{x}+\Upsilon_{x x x}-2 \Upsilon_{x}^{3}+3\left(\lambda+\Upsilon_{x}\right)(\mathcal{D} \Upsilon)\left(\mathcal{D} \Upsilon_{x}\right)=0 \tag{10}
\end{equation*}
$$

We see that equation (9) is the Miura-type transformation found in [11, 17], while equation (10) is a generalization of the supersymmetric modified $K d V$ equation. If we set the parameter λ to zero, we recover the standard version, which was discussed recently in [8] according to Hirota's method.

4. Nonlinear superposition formula

In this section, we will show that a nonlinear superposition formula associated with the bilinear BT (5) and (6) can be derived naturally.

Let us start with an arbitrary solution f_{0}. By taking BT with parameter λ_{1}, we have another solution f_{1}. Then we do the second step of BT starting with f_{1} and parameter taking value λ_{2}. The solution obtained in this step is denoted as f_{12}. Now we exchange the parameters, namely starting with f_{0} and doing the first step of BT with parameter λ_{2}, we obtain a solution f_{2}. Then doing the second step of BT with the parameter λ_{1}, we arrive at a solution f_{21}. By Bianchi's permutation theorem, we may take $f_{12}=f_{21}$. This process is represented schematically by

Let us list the equations resulting from the above procedure. From (6), we have

$$
\begin{align*}
& \left(D_{t}+3 \lambda_{1}^{2} D_{x}-3 \lambda_{1} D_{x}^{2}+D_{x}^{3}\right) f_{0} \cdot f_{1}=0 \tag{11}\\
& \left(D_{t}+3 \lambda_{2}^{2} D_{x}-3 \lambda_{2} D_{x}^{2}+D_{x}^{3}\right) f_{1} \cdot f_{12}=0 \tag{12}\\
& \left(D_{t}+3 \lambda_{2}^{2} D_{x}-3 \lambda_{2} D_{x}^{2}+D_{x}^{3}\right) f_{0} \cdot f_{2}=0 \tag{13}\\
& \left(D_{t}+3 \lambda_{1}^{2} D_{x}-3 \lambda_{1} D_{x}^{2}+D_{x}^{3}\right) f_{2} \cdot f_{12}=0 \tag{14}
\end{align*}
$$

from equations (11) and (14), we have

$$
\begin{gather*}
\left(D_{t} f_{0} \cdot f_{1}\right) f_{2} f_{12}-\left(D_{t} f_{2} \cdot f_{12}\right) f_{0} f_{1}=-3 \lambda_{1}^{2}\left[\left(D_{x} f_{0} \cdot f_{1}\right) f_{2} f_{12}-f_{0} f_{1}\left(D_{x} f_{2} \cdot f_{12}\right)\right] \\
\quad+3 \lambda_{1}\left[\left(D_{x}^{2} f_{0} \cdot f_{1}\right) f_{2} f_{12}-f_{0} f_{1}\left(D_{x}^{2} f_{2} \cdot f_{12}\right]\right. \\
 \tag{15}\\
\quad-\left(D_{x}^{3} f_{0} \cdot f_{1}\right) f_{2} f_{12}+f_{0} f_{1}\left(D_{x}^{3} f_{2} \cdot f_{12}\right)
\end{gather*}
$$

by means of the identity (A.6), we obtain from above

$$
\begin{gather*}
\left(D_{t} f_{0} \cdot f_{2}\right) f_{1} f_{12}-f_{0} f_{2}\left(D_{t} f_{1} \cdot f_{12}\right)=-3 \lambda_{1}^{2}\left[\left(D_{x} f_{0} \cdot f_{2}\right) f_{1} f_{12}-f_{0} f_{2}\left(D_{x} f_{1} \cdot f_{12}\right)\right] \\
\quad+3 \lambda_{1}\left[\left(D_{x}^{2} f_{0} \cdot f_{1}\right) f_{2} f_{12}-f_{0} f_{1}\left(D_{x}^{2} f_{2} \cdot f_{12}\right]\right. \\
 \tag{16}\\
\quad-\left(D_{x}^{3} f_{0} \cdot f_{1}\right) f_{2} f_{12}+f_{0} f_{1}\left(D_{x}^{3} f_{2} \cdot f_{12}\right)
\end{gather*}
$$

Similarly, using equations (12) and (13), we have

$$
\begin{gather*}
\left(D_{t} f_{1} \cdot f_{12}\right) f_{0} f_{2}-f_{1} f_{12}\left(D_{t} f_{0} \cdot f_{2}\right)=-3 \lambda_{2}^{2}\left[\left(D_{x} f_{1} \cdot f_{12}\right) f_{0} f_{2}-f_{1} f_{12}\left(D_{x} f_{0} \cdot f_{2}\right)\right] \\
\quad+3 \lambda_{2}\left[\left(D_{x}^{2} f_{1} \cdot f_{12}\right) f_{0} f_{2}-f_{1} f_{12}\left(D_{x}^{2} f_{0} \cdot f_{2}\right]\right. \\
 \tag{17}\\
\quad-\left(D_{x}^{3} f_{1} \cdot f_{12}\right) f_{0} f_{2}+f_{1} f_{12}\left(D_{x}^{3} f_{0} \cdot f_{2}\right)
\end{gather*}
$$

Then adding equation (16) with equation (17), we have

$$
\begin{align*}
3\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)[(& \left.\left.D_{x} f_{0} \cdot f_{2}\right) f_{1} f_{12}-f_{0} f_{2}\left(D_{x} f_{1} \cdot f_{12}\right)\right]=3 \lambda_{1}\left[\left(D_{x}^{2} f_{0} \cdot f_{1}\right) f_{2} f_{12}\right. \\
& \left.-f_{0} f_{1}\left(D_{x}^{2} f_{2} \cdot f_{12}\right)\right]+3 \lambda_{2}\left[\left(D_{x}^{2} f_{1} \cdot f_{12}\right) f_{0} f_{2}-f_{1} f_{12}\left(D_{x}^{2} f_{0} \cdot f_{2}\right)\right] \\
& -\left(D_{x}^{3} f_{0} \cdot f_{1}\right) f_{2} f_{12}+f_{0} f_{1}\left(D_{x}^{3} f_{2} \cdot f_{12}\right) \\
& -\left(D_{x}^{3} f_{1} \cdot f_{12}\right) f_{0} f_{2}+f_{1} f_{12}\left(D_{x}^{3} f_{0} \cdot f_{2}\right) \tag{18}
\end{align*}
$$

Taking account of (A.7) and (A.8), we find

$$
\begin{gather*}
\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left[\left(D_{x} f_{0} \cdot f_{2}\right) f_{1} f_{12}-f_{0} f_{2}\left(D_{x} f_{1} \cdot f_{12}\right)\right]=D_{x}\left[\left(\lambda_{1}-\lambda_{2}\right)\left(D_{x} f_{0} \cdot f_{12}\right) \cdot f_{2} f_{1}\right] \\
+D_{x}\left[\left(\lambda_{1}+\lambda_{2}\right) f_{0} f_{12} \cdot\left(D_{x} f_{2} \cdot f_{1}\right)\right]+D_{x}\left[\left(D_{x} f_{0} \cdot f_{12}\right) \cdot\left(D_{x} f_{1} \cdot f_{2}\right)\right], \tag{19}
\end{gather*}
$$

or

$$
\begin{equation*}
D_{x}\left\{\left[\left(D_{x}-\lambda_{1}-\lambda_{2}\right) f_{0} \cdot f_{12}\right] \cdot\left[\left(D_{x}+\lambda_{1}-\lambda_{2}\right) f_{1} \cdot f_{2}\right]\right\}=0, \tag{20}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left(D_{x}-\lambda_{1}-\lambda_{2}\right) f_{0} \cdot f_{12}=c_{1}\left(D_{x}+\lambda_{1}-\lambda_{2}\right) f_{1} \cdot f_{2} \tag{21}
\end{equation*}
$$

where $c_{1}=c_{1}(t)$ is an integration constant.
Now we consider the other part. With the assumption that (21) holds, we consider

$$
\mathbb{Q} \equiv\left[\left(S D_{x}-\lambda_{1} S\right) f_{0} \cdot f_{1}\right] f_{2}-\left[\left(S D_{x}-\lambda_{2} S\right) f_{0} \cdot f_{2}\right] f_{1}
$$

it yields

$$
\begin{align*}
\mathbb{Q} \stackrel{(A .9-A .10)}{=} & -\left(\mathcal{D} f_{0}\right)\left(D_{x} f_{1} \cdot f_{2}\right)-f_{0 x}\left(S f_{1} \cdot f_{2}\right)+\frac{1}{2} f_{0}\left[\left(S f_{0} \cdot f_{1}\right)_{x} f_{2}+\mathcal{D}\left(D_{x} f_{1} \cdot f_{2}\right)\right] \\
& -\left(\lambda_{1}-\lambda_{2}\right)\left[\left(\mathcal{D} f_{0}\right) f_{1} f_{2}-\frac{1}{2} f_{0}\left(\mathcal{D} f_{1} f_{2}\right)\right]+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) f_{0}\left(S f_{1} \cdot f_{2}\right) \\
= & -\left(\mathcal{D} f_{0}\right)\left[\left(D_{x}+\lambda_{1}-\lambda_{2}\right) f_{1} \cdot f_{2}\right]+\frac{1}{2} f_{0} \mathcal{D}\left[\left(D_{x}+\lambda_{1}-\lambda_{2}\right) f_{1} \cdot f_{2}\right] \\
& -f_{0 x}\left(S f_{1} \cdot f_{2}\right)+\frac{1}{2} f_{0}\left(S f_{1} \cdot f_{2}\right)_{x}+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) f_{0}\left(S f_{1} \cdot f_{2}\right) \\
\stackrel{(21)}{=} & \underbrace{\frac{\left(\mathcal{D} f_{0}\right)}{c_{1}}\left[\left(D_{x}-\lambda_{1}-\lambda_{2}\right) f_{0} \cdot f_{12}\right]+\frac{f_{0}}{2 c_{1}} \mathcal{D}\left[\left(D_{x}-\lambda_{1}-\lambda_{2}\right) f_{0} \cdot f_{12}\right]} \\
& -f_{0 x}\left(S f_{1} \cdot f_{2}\right)+\frac{1}{2} f_{0}\left(S f_{1} \cdot f_{2}\right)_{x}+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) f_{0}\left(S f_{1} \cdot f_{2}\right) . \tag{22}
\end{align*}
$$

We now note that the underbraced terms can be reformulated as

$$
-\frac{f_{0 x}}{c_{1}}\left(S f_{0} \cdot f_{12}\right)+\frac{f_{0}}{2 c_{1}}\left[\left(S f_{0} \cdot f_{12}\right)_{x}+\left(\lambda_{1}+\lambda_{2}\right) S f_{0} \cdot f_{12}\right]
$$

therefore we have

$$
\begin{equation*}
\mathbb{Q}=\left[-f_{0 x}+\frac{1}{2} f_{0} \frac{\partial}{\partial x}+\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) f_{0}\right]\left[\frac{1}{c_{1}} S f_{0} \cdot f_{12}+S f_{1} \cdot f_{2}\right] . \tag{23}
\end{equation*}
$$

From $\mathbb{Q}=0$ we have

$$
\begin{equation*}
\frac{1}{c_{1}} S f_{0} \cdot f_{12}+S f_{1} \cdot f_{2}=c_{2} f_{0}^{2} \mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right) x} \tag{24}
\end{equation*}
$$

where $c_{2}=c_{2}(t)$ is an integration constant.
The nonlinear superposition formula constitutes equations (21) and (24), which are differential equations to be solved to find solutions. Interestingly, they can be solved in a closed form

$$
\begin{gathered}
f_{12}=\frac{c_{1}}{\left(\lambda_{1}+\lambda_{2}\right) f_{0}}\left[\frac{2\left(\mathcal{D} f_{0}\right) S f_{1} \cdot f_{2}}{f_{0}}-2 D_{x} f_{1} \cdot f_{2}+2\left(\mathcal{D} f_{1}\right)\left(\mathcal{D} f_{2}\right)\right. \\
\left.-\left(\lambda_{1}-\lambda_{2}\right) f_{1} f_{2}+c_{2} f_{0}^{2}\left(\mathcal{D} \mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right) x}\right)\right]
\end{gathered}
$$

However, by setting $c_{1}=1$ and $c_{2}=0$, we have
$f_{12}=\frac{1}{\left(\lambda_{1}+\lambda_{2}\right) f_{0}}\left[\frac{2\left(\mathcal{D} f_{0}\right) S f_{1} \cdot f_{2}}{f_{0}}-2 D_{x} f_{1} \cdot f_{2}+2\left(\mathcal{D} f_{1}\right)\left(\mathcal{D} f_{2}\right)-\left(\lambda_{1}-\lambda_{2}\right) f_{1} f_{2}\right]$,
this nonlinear superposition formula is of differential-algebraic nature.
Let us now try to calculate some solutions. As usual, we start with the trivial solution

$$
f_{0}=1
$$

then we find the 1 -soliton solution

$$
f=1+\mathrm{e}^{\eta}, \quad \eta=k x-k^{3} t+\theta \xi
$$

where k is the ordinary wavenumber which relates to the spectral parameter through $k=-\lambda$ and ξ is a Grassmann odd constant. To construct a 2 -soliton, we take

$$
f_{1}=1+\mathrm{e}^{\eta_{1}}, \quad f_{2}=1+\mathrm{e}^{\eta_{2}}
$$

then we obtain

$$
f_{12}=-\frac{k_{1}-k_{2}}{k_{1}+k_{2}}+\mathrm{e}^{\eta_{1}}-\mathrm{e}^{\eta_{2}}+\frac{k_{1}-k_{2}-2 \xi_{1} \xi_{2}-2 \theta\left(k_{1} \xi_{2}-k_{2} \xi_{1}\right)}{k_{1}+k_{2}} \mathrm{e}^{\eta_{1}+\eta_{2}}
$$

We may continue to calculate a 3 -soliton solution, which is
$f_{123}=s_{0}+s_{1} \mathrm{e}^{\eta_{1}}+s_{2} \mathrm{e}^{\eta_{2}}+s_{3} \mathrm{e}^{\eta_{3}}+s_{12} \mathrm{e}^{\eta_{1}+\eta_{2}}+s_{13} \mathrm{e}^{\eta_{1}+\eta_{3}}+s_{23} \mathrm{e}^{\eta_{2}+\eta_{3}}+s_{123} \mathrm{e}^{\eta_{1}+\eta_{2}+\eta_{3}}$,
where
$s_{0}=\frac{\left(k_{1}-k_{2}\right)\left(k_{1}-k_{3}\right)\left(k_{2}-k_{3}\right)}{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{3}\right)\left(k_{2}+k_{3}\right)}, \quad s_{1}=\frac{k_{2}-k_{3}}{k_{2}+k_{3}}, \quad s_{2}=-\frac{k_{1}-k_{3}}{k_{1}+k_{3}}$,
$s_{3}=\frac{k_{1}-k_{2}}{k_{1}+k_{2}}, \quad s_{12}=\frac{-k_{1}+k_{2}+2 m_{12}}{k_{1}+k_{2}}, \quad s_{13}=\frac{k_{1}-k_{3}-2 m_{13}}{k_{1}+k_{3}}$,
$s_{23}=\frac{-k_{2}+k_{3}+2 m_{23}}{k_{2}+k_{3}}$,
$s_{123}=-s_{0}+2 \frac{\left(m_{12}+m_{23}-m_{13}\right)\left(k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}\right)+\left(m_{12} k_{3}^{2}+m_{23} k_{1}^{2}-m_{13} k_{2}^{2}\right)}{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{3}\right)\left(k_{2}+k_{3}\right)}$,
and

$$
m_{i j}=\xi_{i} \xi_{j}+\theta\left(k_{i} \xi_{j}-k_{j} \xi_{i}\right)
$$

These solutions are equivalent to those found early in [2].

5. Conclusions

In this paper, we have shown that on the basis of Hirota's direct method, we may extract a lot of properties for the sKdV equation. We derive a BT, a Lax representation, and a modified equation. We also constructed a nonlinear superposition formula within the bilinear approach. Thus, even in the supersymmetric case, Hirota's bilinear method is a very effective method.

In the classical case, the chain of a BT supplies a chain of integrable systems. In the KdV case, such a situation is studied by Nakamura and Hirota [14, 15]. It would be interesting to find out what happens in the supersymmetric case.

Acknowledgments

The work was done when the authors visited the Abdus Salam International Centre for Theoretical Physics. We would like to thank the ICTP for support and hospitality. QPL is supported in part by National Natural Science Foundation of China under the grant number 10231050 and the Ministry of Education of China, and XBH is supported by National Natural Science Foundation of China under the grant number 10171100.

Appendix. Some bilinear identities

In this appendix, we list the relevant bilinear identities, which can be proved directly. Here a, b, c and d are arbitrary even functions of the independent variables x, t and θ.
$\left(S D_{t} a \cdot a\right) b^{2}-a^{2}\left(S D_{t} b \cdot b\right)=2 S\left(D_{t} a \cdot b\right) \cdot b a$
$\left(S D_{x}^{3} a \cdot a\right) b^{2}-a^{2}\left(S D_{x}^{3} b \cdot b\right)=2 S\left[\left(D_{x}^{3} a \cdot b\right) \cdot a b+3\left(D_{x}^{2} a \cdot b\right) \cdot\left(D_{x} b \cdot a\right)\right]$

$$
\begin{equation*}
-3\left[\left(S D_{x} a \cdot a\right)\left(D_{x}^{2} b \cdot b\right)-\left(S D_{x} b \cdot b\right)\left(D_{x}^{2} a \cdot a\right)\right] \tag{A.2}
\end{equation*}
$$

$$
\begin{align*}
S\left(D_{x}^{2} a \cdot b\right) \cdot & \left(D_{x} b \cdot a\right)-D\left(S D_{x} a \cdot b\right) \cdot\left(D_{x} b \cdot a\right) \\
& =\frac{1}{2}\left[\left(S D_{x} a \cdot a\right)\left(D_{x}^{2} b \cdot b\right)-\left(S D_{x} b \cdot b\right)\left(D_{x}^{2} a \cdot a\right)\right] \tag{A.3}
\end{align*}
$$

$D_{x}(S a \cdot b) \cdot\left(D_{x} b \cdot a\right)=D_{x}\left(S D_{x} a \cdot b\right) \cdot b a-S\left(D_{x}^{2} a \cdot b\right) \cdot a b$
$S\left(D_{x} a \cdot b\right) \cdot b a=D_{x}(S a \cdot b) \cdot b a$
$\left(D_{x} a \cdot b\right) c d-a b\left(D_{x} c \cdot d\right)=\left(D_{x} a \cdot c\right) b d-a c\left(D_{x} b \cdot d\right)$
$\left(D_{x}^{2} a \cdot b\right) c d-a b\left(D_{x}^{2} c \cdot d\right)=D_{x}\left[\left(D_{x} a \cdot d\right) \cdot c b+a d \cdot\left(D_{x} c \cdot b\right)\right]$
$\left(D_{x}^{3} a \cdot b\right) c d+a b\left(D_{x}^{3} c \cdot d\right)=\left(D_{x}^{3} a \cdot d\right) c b+a d\left(D_{x}^{3} c \cdot b\right)-3 D_{x}\left(D_{x} a \cdot c\right) \cdot\left(D_{x} b \cdot d\right)$,
$\left(S D_{x} a \cdot b\right) c-\left(S D_{x} a \cdot c\right) b=-(\mathcal{D} a)\left(D_{x} b \cdot c\right)-a_{x}(S b \cdot c)+\frac{1}{2} a\left[(S b \cdot c)_{x}+\mathcal{D}\left(D_{x} b \cdot c\right)\right]$,
$\lambda_{1}(S a \cdot b) c-\lambda_{2}(S a \cdot c) b=\left(\lambda_{1}-\lambda_{2}\right)(\mathcal{D} a) b c-\frac{1}{2} a\left[\left(\lambda_{1}+\lambda_{2}\right)(S b \cdot c)+\left(\lambda_{1}-\lambda_{2}\right) \mathcal{D} b c\right]$.

References

[1] Carstea A S 2000 Nonlinearity 13 1645-56
[2] Carstea A S, Ramani A and Grammaticos B 2001 Nonlinearity 14 1419-23
[3] Hirota R 1980 Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) p 157
[4] Hirota R 2004 Direct Methods in Soliton Theory (Cambridge Tracts in Mathematics vol 155) (Cambridge: Cambridge University Press)
[5] Liu Q P 1995 Lett. Math. Phys. 35 115-22
[6] Liu Q P and Mañas M 1998 Supersymmetry and Integrable Systems ed H Aratyn et al (Lecture Notes in Phys. vol 502) (Berlin: Springer) pp 268-81
[7] Liu Q P 1997 J. Phys. A: Math. Gen. 30 8661-70
[8] Liu Q P, Hu X-B and Zhang M-X 2005 Nonlinearity 18 1597-1603
[9] Liu Q P and Xie Y F 2004 Phys. Lett. A 325 139-43
[10] Manin Yu I and Radul A O 1995 Commun. Math. Phys. 98 65-77
[11] Mathieu P 1988 J. Math. Phys. 29 2499-506
[12] Mathieu P 1988 Phys. Lett. A 128 169-71
[13] McArthur I and Yung C M 1993 Mod. Phys. Lett. A 8 1739-45
[14] Nakamura A and Hirota R 1980 J. Phys. Soc. Japan 48 1755-62
[15] Nakamura A 1981 J. Math. Phys. 22 1608-13
[16] Oevel W and Popowicz Z 1991 Commun. Math. Phys. 139 441-60
Figueroa-O'Farrill J M, Mas J and Ramos E 1991 Rev. Math. Phys. 3479
[17] Yamanaka I and Sasaki R 1988 Prog. Theor. Phys. 79 1167-84

